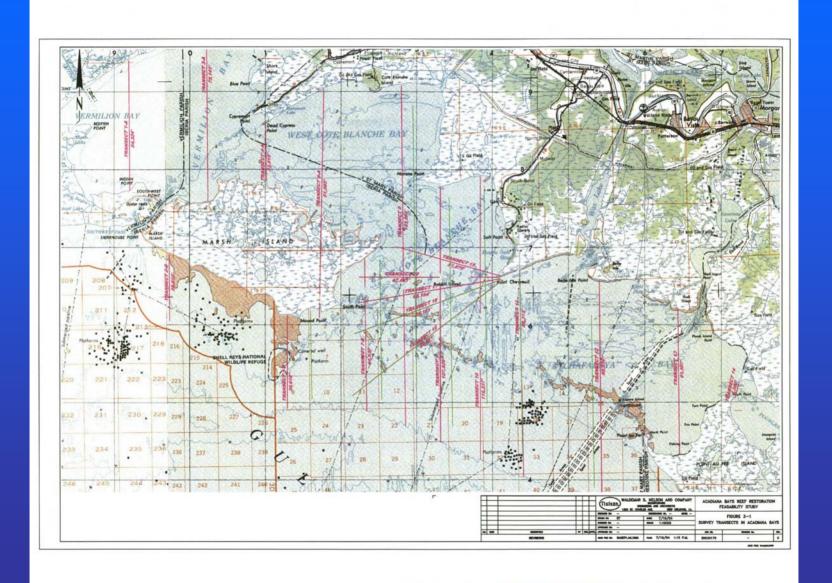
Acadiana Bays Reef Restoration Feasibility Study LDNR

Purpose Of Project

• Evaluate the effects of the introduction of reef structures within the Acadiana Bays System.

- These effects include:
 - Salinity
 - Turbidity
 - Wave Climate
 - Storm Surge


Principle Components Of Project

- Surveying Program
- Preliminary Engineering Program
- Hydrodynamic/Water Quality Modeling Program
- Habitat Suitability Assessment

Principle Components Of Project

- Surveying Program
 - From Four League Bay through Vermillion Bay
 - 19 transects run to develop current bathymetry

Survey Transects

Principle Components Of Project

- Engineering Program
 - Geotechnical Evaluation
 - Preliminary Design Of Reef
 - Reef Location And Alignment
 - Cost Estimates Of Reef Construction

Geotechnical Evaluation

LOURIE CONSULTANTS

Project No. 0102-0011

Acadiana Bays Project -- Coastal Louisiana

Foundation Base Width vs Fill Unit Weight For Embankment Height (H) Ranging From 1 to 5 ft Foundation: Very Soft to Soft Clay, $S_u = 0$ psf at Mudline, Increasing Linearly to 400 psf at 40 ft

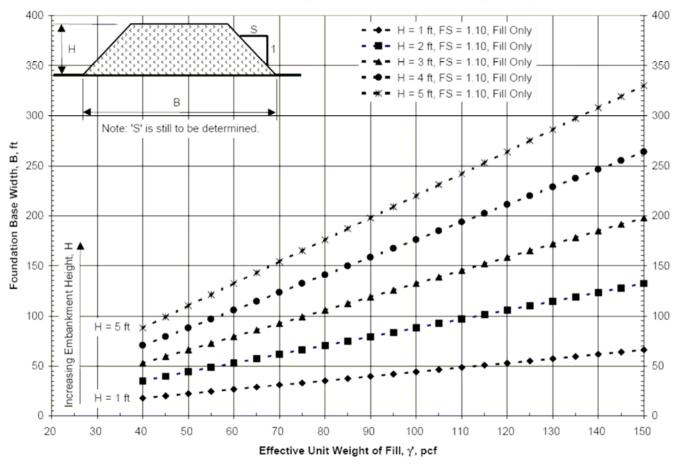
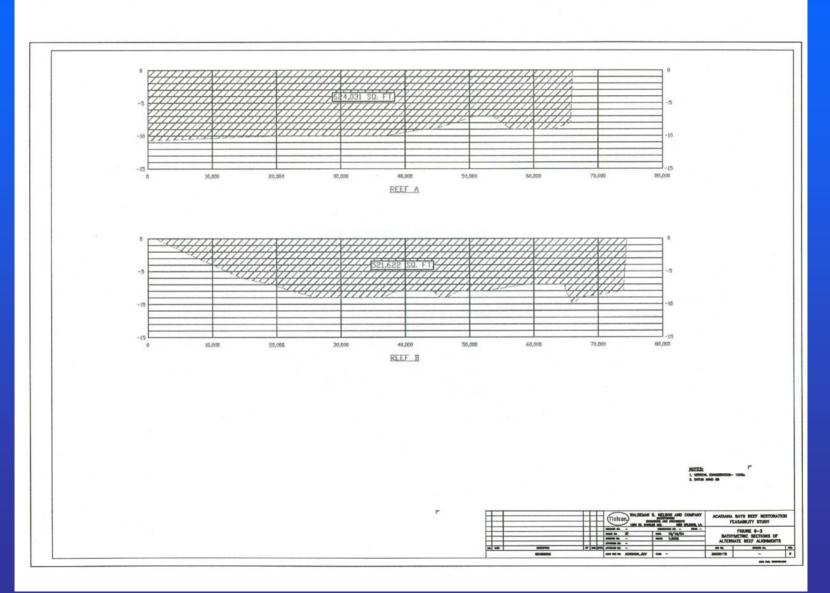
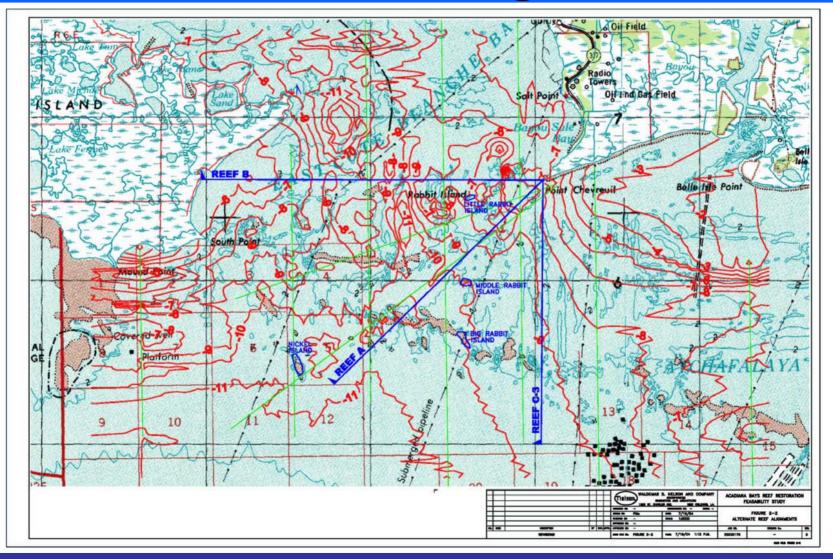




PLATE 6

Reef Section

Alternate Reef Alignments

Reef Construction Cost Estimates

TABLE 6-7 ACADIANA BAYS PROJECT VOLUME SUMMARY

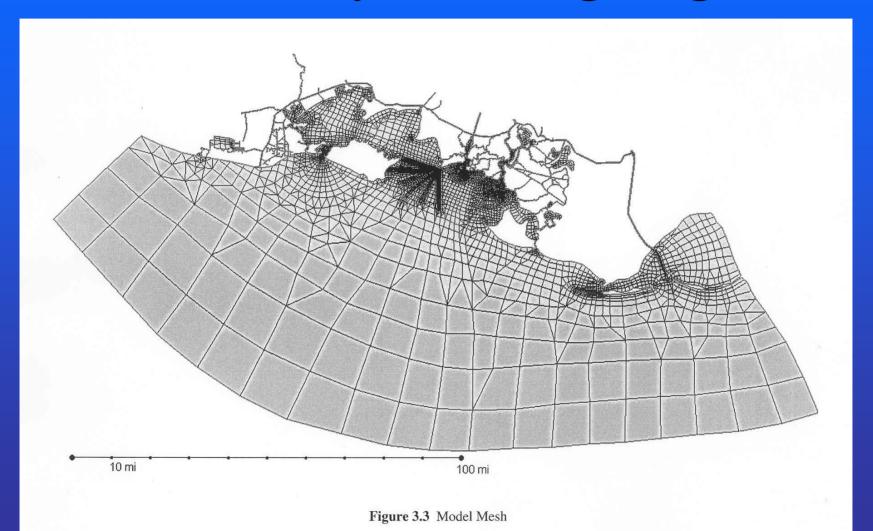
ELEVATION	FILL WEIGHT* (PCF)	VOLUME (CY)	COST
TOP OF REEF STRUCTURE AT EL. 0.00	70	4,740,000	\$155,500,000.00
	86	5,140,000	\$392,000,000.00
	86 (DSM)	830,000	\$295,000,000.00
TOP OF REEF STRUCTURE AT EL3.00	7 0= 3.4	2,280,000	\$75,300,000.00
	86	2,520,000	\$192,000,000.00
ELEVATION	REEF B	VOLUME (CY)	COST
	FILL WEIGHT* (PCF)	VOLUME (CY)	COST
	FILL WEIGHT* (PCF)	3,250,000	\$107,000,000.00
ELEVATION TOP OF REEF STRUCTURE AT EL. 0.00	FILL WEIGHT* (PCF)		

^{*} SUBMERGED FILL WEIGHT

Principle Components Of Project

- Oceanographic Monitoring Phase
- Modeling Program

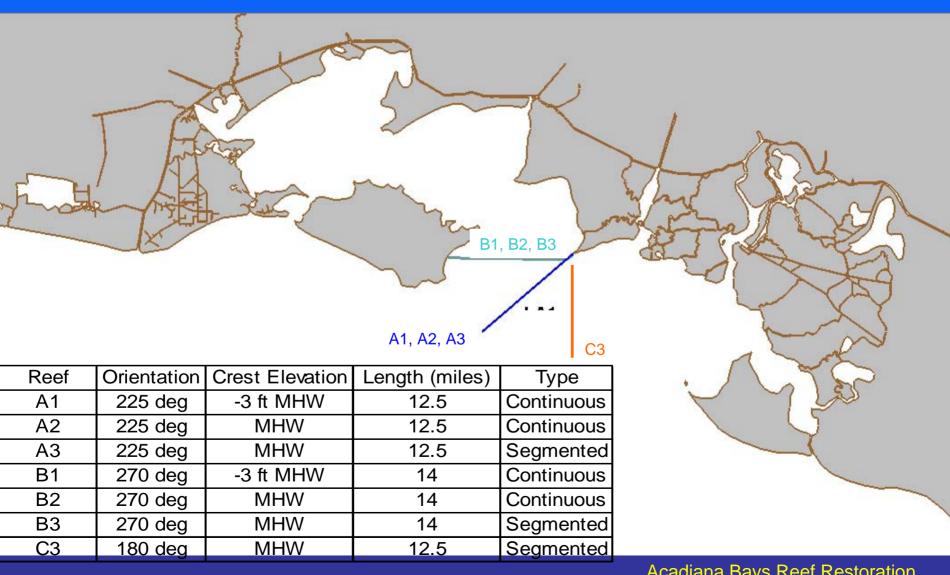
- Currents
- Salinity Regime
- Turbidity
- Dampening Of Storm Surges


Monitoring Phase

CSI-14 Gage Installed for data acquisition.

http://www.ndbc.noaa.gov/station_page.php?station=slpl1

Acadiana Bays Modeling Program

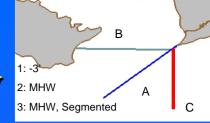

Modeling Objectives

- Document the ability of reestablished reefs to influence turbidity and salinity regimes in Acadiana Bays.
- Document the influence of historic flow patterns on the salinity regime.
- Document the effect of reduced Atchafalaya River flow on present salinity regime.

Modeling Methodology

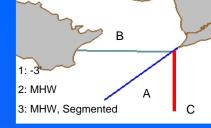
- Reef Reestablishment Effect
 - Establish baseline conditions
 - Circulation, salinity, turbidity, and waves
 - Evaluate effects of reef alternatives on parameters
- Historical Flows Effect
 - Model pre-1940s bay-river configuration
- Effects of Reduced Atchafalaya Flow
 - 10% reduction in flow (diversion north of project area assumed)

Modeled Reef Alternatives

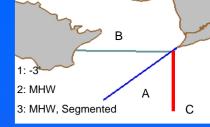


Acadiana Bays Reef Restoration Feasibility Study/LDNR

Modeling Methodology


- Data evaluation and acquisition
- Calibrate models
- Model representative seasonal conditions to examine annual variations
 - High flow
 - Mean flow
 - Low/summer flow
 - Winter flow
- Model low frequency storm conditions on waves
- Model pre-1940s bay-river configuration
- Compare with-reef to existing conditions

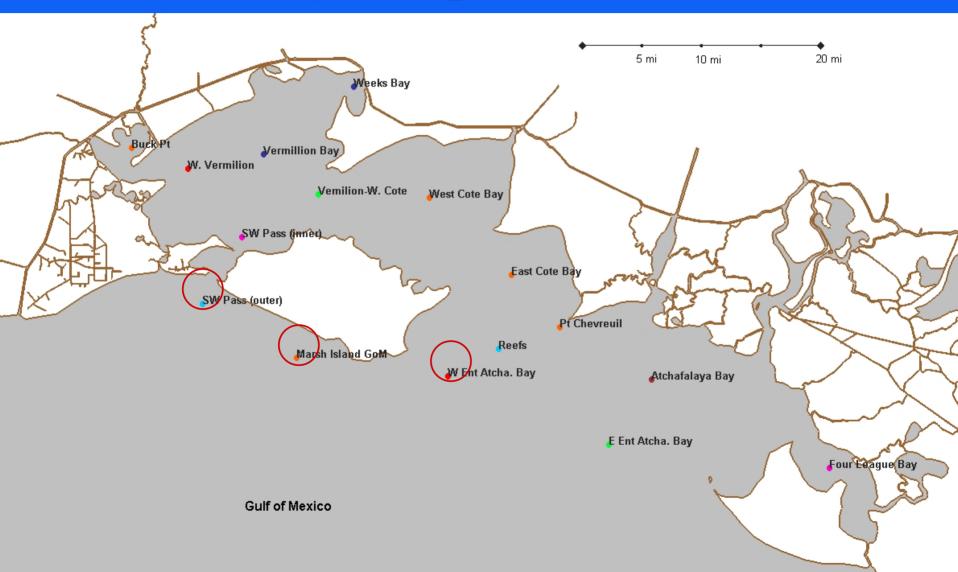
Overall Findings - Salinity


- Reefs effects on salinity
 - Submerged reefs had negligible effects
 - Emergent continuous reefs
 - A2 raised average salinities by 1 to 2 ppt in western bays
 - B2 raised average salinities by about 1 ppt in western bays
 - Emergent segmented reefs
 - A3 raised salinities but less than A2 in western bays
 - B3 raised salinities but less than B2 in western bays
 - C3 raised salinities slightly more than A3 in western bays

Overall Findings - Turbidity

- Reefs effects on turbidity
 - Submerged reefs had negligible effects
 - Emergent continuous reefs decreased turbidities in western bays
 - 15-20% on average
 - 30% at best

Overall Findings – Storm Surge



- Reefs effects on storm surge
 - Decrease storm surge along the bay shores
 - B2 produces the largest reduction 0.5 ft (5%)
- Reefs effects on waves
 - Only affect their immediate vicinity because most of the waves are locally generated
 - Mud bottom dissipated most of Gulf-related swell
- Modeling of pre-1940s configuration indicated higher salinities in the western bays.

Principle Components Of Project

- Habitat Suitability Assessment
- Species examined
 - Spotted Seatrout (speckled trout)
 - Brown Shrimp
 - White Shrimp

Stations with Increases in Habitat Suitability for Speckled Trout (A2)

Increase in HSI for Speckled Trout (Alt A2)

<u>Station</u>	Increase in HSI	Station West Cote Bay	Increase in HSI 0.00
SW Pass (outer)	0.22	East Cote Bay	0.00
SW Pass (inner)	0.00	Reefs	0.00
Vermillion Bay	0.00	Atchafalaya Bay	0.00
L Vermilion	0.00	W Ent Atcha. Bay	<u>0.11</u>
W. Vermilion	0.00	E Ent Atcha. Bay	0.00
Weeks Bay	0.00	Four League Bay	0.00
Vermilion-W. Cote	0.00	Marsh Island GoM	<u>0.13</u>

Increase in HSI for Speckled Trout (Historic)

Station	Increase in HSI	Station West Cote Bay	Increase in HSI 0.79
SW Pass (outer)	1.00	East Cote Bay	0.75
SW Pass (inner)	1.00	Reefs	NP
Vermillion Bay	0.82	Atchafalaya Bay	0.04
L Vermilion	0.11	W Ent Atcha. Bay	1.00
W. Vermilion	0.75	E Ent Atcha. Bay	0.68
Weeks Bay	0.75	Four League Bay	NP
Vermilion-W. Cote	0.79	Marsh Island GoM	0.61

Summary of Habitat Suitability Assessment

- Habitat suitability for speckled trout is likely limited by salinity in the Bays system.
- Alternative A2 (maximum salinity change) increases suitability <0.25 in only three offshore stations.
- "Historic Conditions" run increases suitability in all stations to where salinity would no longer be limiting (food and cover would limit).
- Reef restoration alone would not significantly increase speckled trout abundances.
- Shrimp are probably more limited by the lack of submerged vegetation than by salinity.

Summary Of Feasibility Study Findings

- Reef alignments evaluated do not significantly affect salinity levels in western bays.
- Reefs do reduce turbidity levels in western bays.
- Reefs do not cause significant dampening of storm surges at coastline.
- Predicted salinity changes would not significantly improve habitat suitability for marine species evaluated.

Summary Of Feasibility Study Findings

- Project could be costly.
- Examination of historic conditions suggests that the construction of the Wax Lake Outlet and the GIWW probably influenced salinity patterns much more than the removal of the historic reefs.